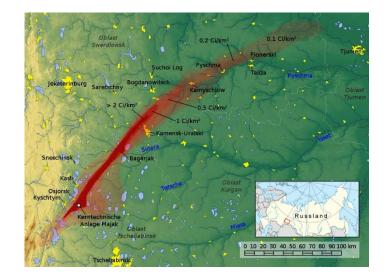
NUCLEAR ACCIDENTS



Relevant accidents for animal products

Radioactive atmospheric releases (TBq)						
Isotopes	Kyshtym	Windscale	Chernobyl	Fukushima Daiichi		
I-131	NA	1800	1,760,000	100,000-400,000		
Cs-137	260	180	~85,000	7,000-20,000		
Cs-134			~47,000	8,300-20,000		
Po-210		42				
Sr-90	2,000	0.75	10,000	3.3-140		
Pu isotopes	3	0.02	6,100	0.0035-1.2		
Zr-95	18,400	16	196,000	17		
Ce-144 & 141	48,700	13	212,000	11		
Ru-106	2,700	3	>73,000	0.002		

Kyshtym accident

- 29 September 1957
- Producing weapons grade Pu at Chelyabinsk-40 (now Ozersk), Urals, USSR
- Failure of cooling system for storage tank
- Non nuclear thermal explosion
- Contaminated plume East Urals radioactive trace (EURT)

Centre for Ecology & HydrologyBatorshin et al 2013 Experience in eliminating the NATURAL ENVIRONMENT RESEARCH COUNCIL CONSEQUENCES of the 1957 accident at the Mayak Production Association. IEM, IAEA

Emergency phase - countermeasures

- EURT 23000 km²
 - defined as: ⁹⁰ Sr deposition density> 3.7 kBq / m²
- Major initial contributor to dose was external y radiation
- Highest rad content in most foodstuffs ¹⁴⁴ Ce & ⁹⁵ Zr (60-70%) ([total rad]10-10000 kBq/kg dw)
- Milk ⁹⁰ Sr was 70% of rad content of milk
- Food intervention limits imposed

Centre for Ecology & Hydrology

ATURAL ENVIRONMENT RESEARCH COUNCIL Fesenko et al 2010 Remediation of contaminated environments: description of case studies. In TRS 475, ed Fesenko and Howard.

Remediation

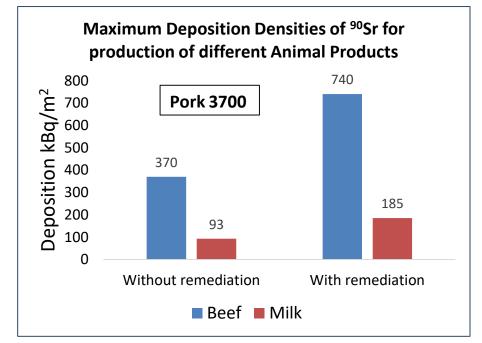
- Long term intensive remediation from spring 1958
- Focus on deposition density and soil type
- High ⁹⁰Sr uptake in some soils with low exch[Ca]
 - Grey forest soils, chernozem, acid soils
- Remediation strategy focused on agricultural, fisheries and forestry production
- Remediation reference level 74 kBq.m² ⁹⁰Sr
 - 1000 km^{2,} 55% agricultural land

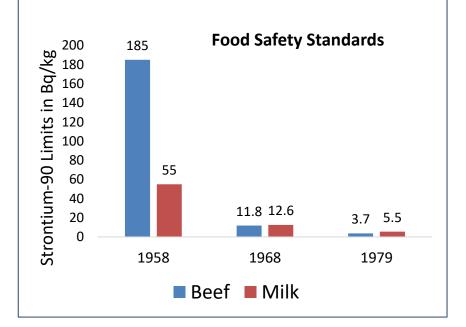
Remediation of animals

- ⁹⁰Sr mainly deposited in animal bones
 - the long biological half-life of ⁹⁰Sr in the bone led to sustained secretion of ⁹⁰Sr into milk
- enhanced contamination if there is chronic ⁹⁰Sr intake by dairy animals
- Ingestion of contaminated food was key long term exposure pathway, only milk 5-8 y after accident

Remediation options used

- Topsoil removal
- Deep ploughing, shallow ploughing
- Turnover ploughing


- Liming and extra mineral fertilisers
- Selecting crop varieties
- Preference to pig and poultry production

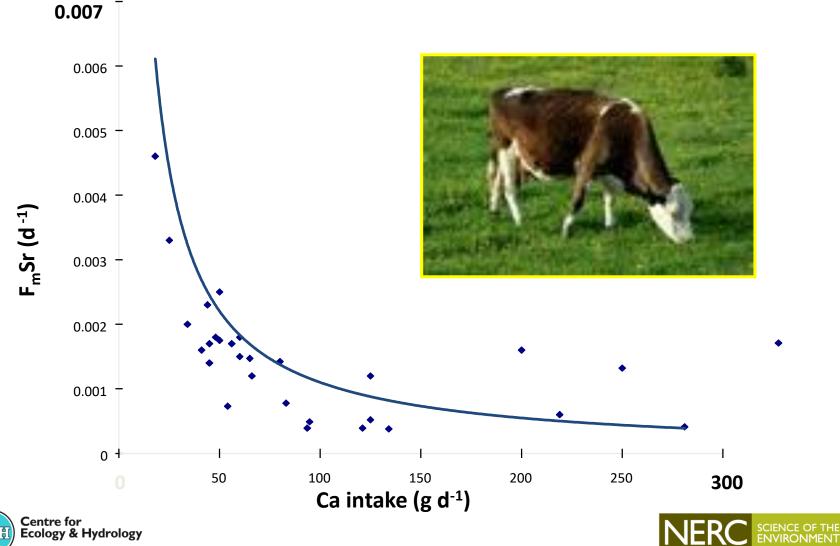


Remediation reference levels

Clean feeding

- Objective is to prevent or control the contamination of animal products by ensuring that feedstuffs which are too highly contaminated are not ingested by agricultural animals.
- one of the most highly preferred options for animal products by stakeholders (including farmers)
- one of the most effective and practically applicable measures for agricultural animals
- used extensively

Clean feeding


- Agricultural animals given nutritionally balanced diets

 either un- or low level contaminated feed
- Needs production of suitable, local forage
- Ensures animal products (normally milk or meat) have activity concentrations below the specified limit
- ✓ Much easier to control if animals are housed
- Wastes faeces and urine do not require special disposal routes
- ✓ Reduces amount of waste milk and meat from otherwise contaminated animals

Effect ca intake on ⁹⁰Sr transfer to milk

NATURAL ENVIRONMENT RESEARCH COUNCIL

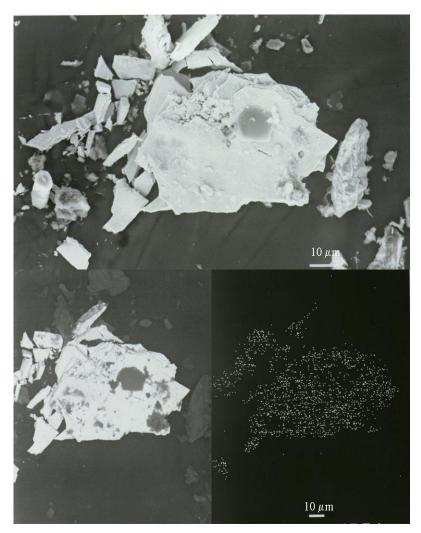
Windscale

- 10 October 1957
- Supplying Pu for British atomic bomb project and to generate other nuclides through the neutron irradiation of appropriate materials placed in channels within the core
- Stored Wigner energy lead to a fire in Unit 1 for 3 d
- INIS level 5
- Key releases ¹³¹I, ¹³⁷Cs, ²¹⁰Po
- Cow milk in coastal area

Garland & Wakeford 2007 Atmospheric emissions from the Windscale accident of October 1957 Atmos Environ 41

Windscale

- 10 October 1957
- Supplying Pu for British atomic bomb project and to generate other nuclides through the neutron irradiation of appropriate materials placed in channels within the core
- Stored Wigner energy lead to a fire in Unit 1 for 3 d
- INIS level 5
- Key releases ¹³¹I, ¹³⁷Cs, ²¹⁰Po
- Cow milk in coastal area

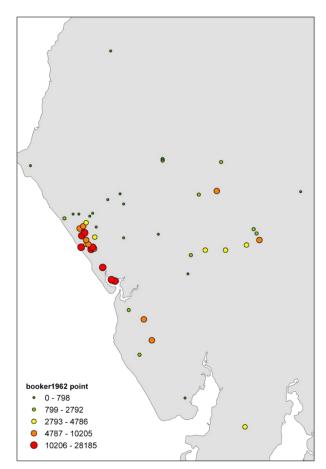

Garland & Wakeford 2007 Atmospheric emissions from the Windscale accident of October 1957 Atmos Environ 41

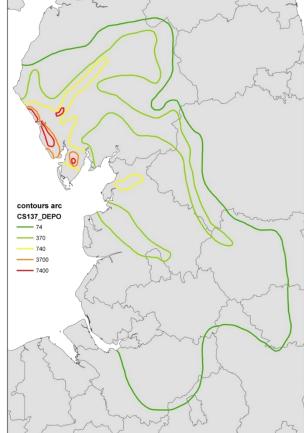
Windscale particle

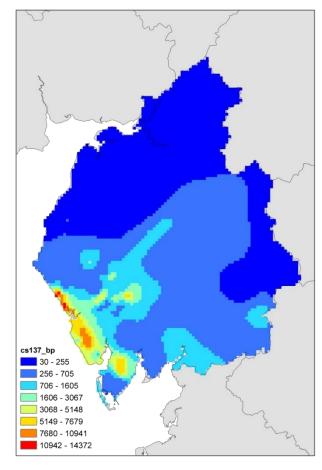
release due to corrosion

Pictures by Agricultural University of Norway

Countermeasures


- Environmental monitoring ¹³¹I was major radiological hazard
- Little guidance available on what constituted an acceptable limit for [¹³¹I] in milk
- Derived limit of 0.1 μ Ci L⁻¹ (3700 Bq L⁻¹) to constrain thyroid doses
- Milk ban based on these *ad hoc* calculations
- West Cumbrian coastal strip running from 10 km north of Windscale to 20 km south.
- Cow milk diluted and dumped into Irish Sea, for c. 1 month

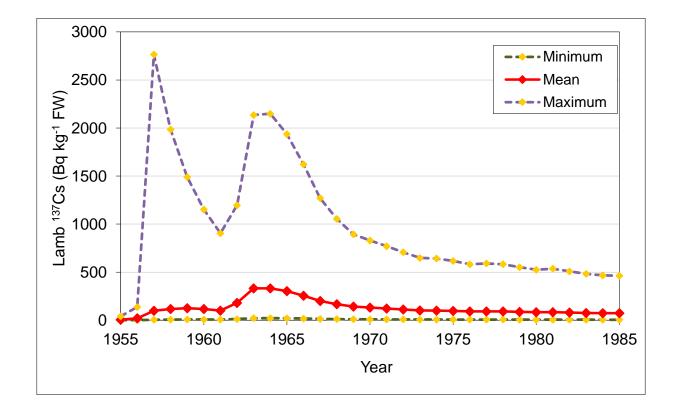




Deposition of ¹³⁷Cs in Cumbria

Jackson & Jones (1991)

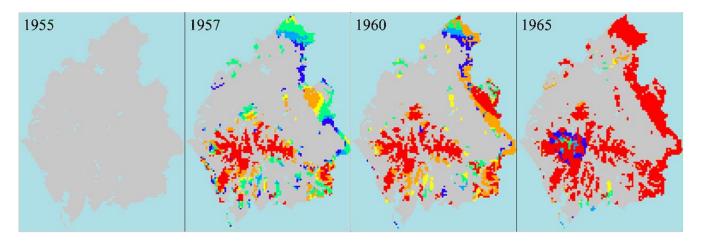
Wright et al 1980s

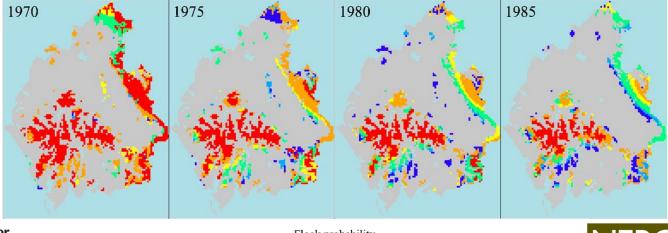


Ecology & Hydrology

Temporal variation in lamb ¹³⁷cs.

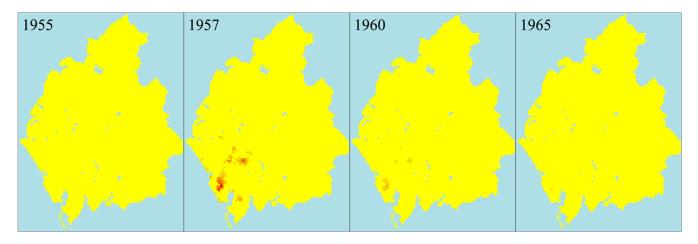
Global fallout + Windscale

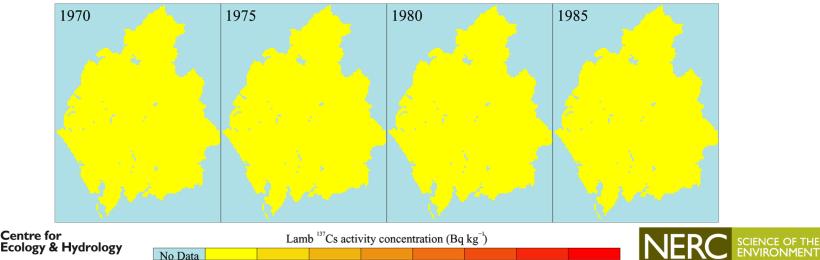




Flock restriction probability

GLOBAL FALLOUT + WINDSCALE

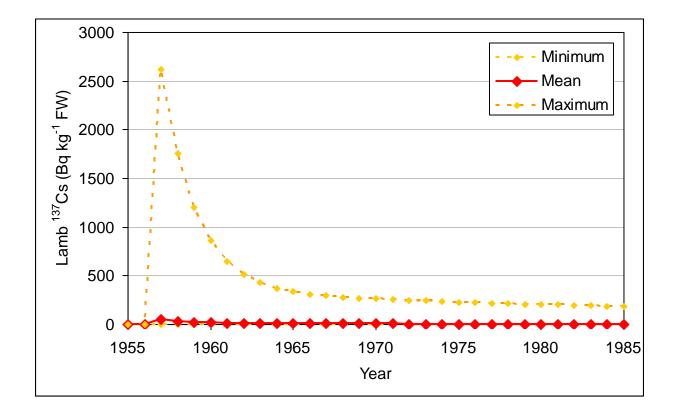




Centre for Ecology & Hydrology			Flock probability						NIERC	SCIENCE OF TH	
	NATURAL ENVIRONMENT RESEARCH COUNCIL	No Data									ENVIRONMENT
		0.000	0.001	0.005	0.010	0.050	0.100	0.500	1.000		

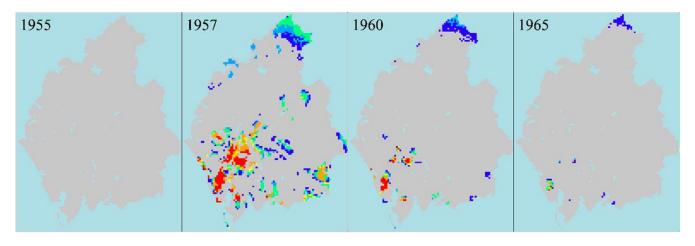
Spatial variation in lamb ¹³⁷Cs

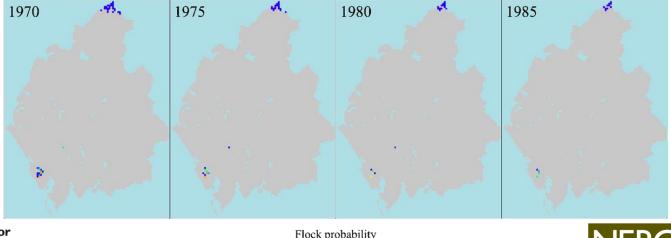
WINDSCALE ONLY

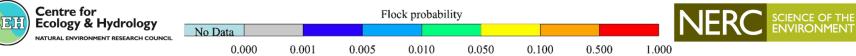


ATURAL ENVIRONMENT RESEARCH COUNCIL

Temporal variation in lamb ¹³⁷Cs--


Windscale ¹³⁷Cs only

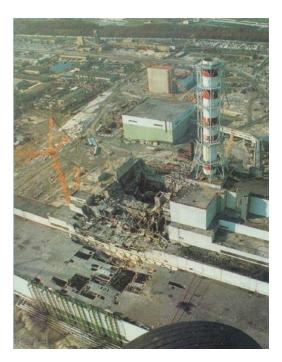




Flock restriction probability WINDSCALE ONLY

Summary of global fallout and Windscale

- Based upon current intervention limits restrictions would have been needed
 - Global fallout + Windscale
 - Global fallout only
 - Windscale only
- Main contributor is global fallout both in terms of level and spatial extent



Chernobyl accident

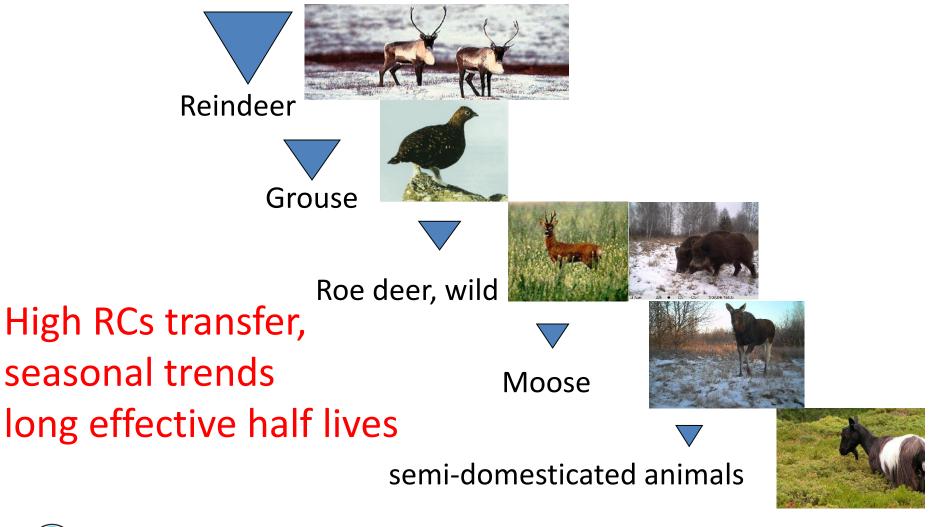
- 26 April 1986, 10 d release
- 1040, 910, 25 and 250 PBq respectively for ¹³² I, ¹³³ I, ¹³⁴ I and ¹³⁵ I (¹³² I in rad equilibrium with ¹³² Te)
- Many W. European countries also affected
- High [RI] in cow milk
- High [RCs] in milk and meat
 - Agricultural and semi-natural animals

Emergency phase - countermeasures

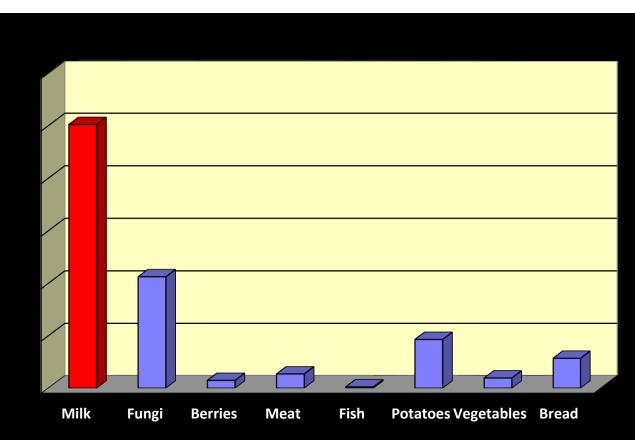
- I isotopes intercepted by plants, eaten by ruminants, high transfer to milk
- Response focused on banning milk from collective farms, not private households
- Consumption of milk from private cows caused thyroid cancers in young children

Existing situation - Radioecological sensitivity

- High RCs uptake for soils
 - Ukraine, Belarus, Russian federation
 - Western Europe


- Long term, sustained transfer of radiocaesium to animals
 - Agricultural areas with sensitive soils
 - Extensive farming in uplands with low fertiliser status and high [OM]
 - Game and semi-domesticated animals

Transfer to semi-natural animals.



Animal products

Contamination of agricultural animal products was often a major contributor to ingestion dose

% contribution to daily Cs-137 intake by population of Milaych Ukraine

Most relevant options for livestock

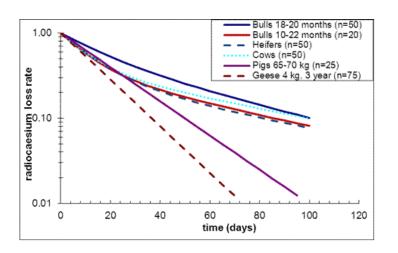
- Remediation of fodder production
- Clean feeding, in vivo monitoring
- prevent gut absorption by application of radiocaesium binding agents to animals
- changing animal feeding strategies

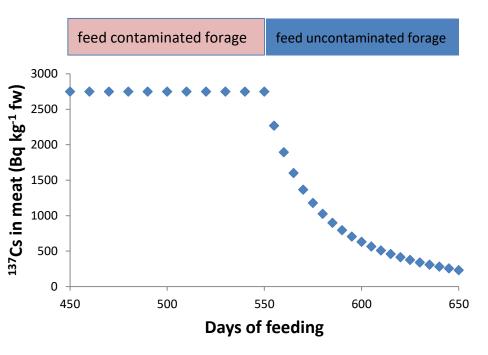
Radical improvement

- ploughing
- improved drainage
- wide range of fertilizer mixtures
 - reseeding
 - Cs sorbents

One of the most effective options to:

- increase productivity of grass stands by 3-5 fold
- decrease the transfer of radiocaesium to fodder by 2-10 fold
 - Farmers like it



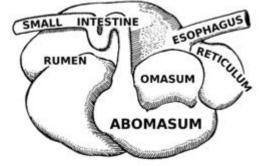


Changing animal feeding strategies

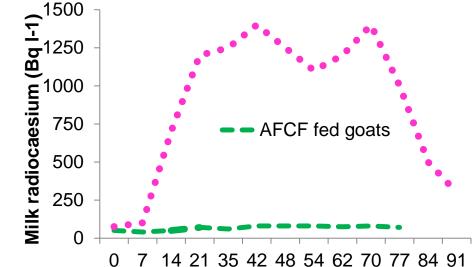
- Utilize contaminated feed for young animals
- Then decontaminate
 - Clean feeding
 - Use of Cs binders

Decontamination of an 18-20 month bull

Preventing gut absorption - clay minerals


- Clay minerals used
 - bentonites vermiculites

- Add to fodder, incorporate into concentrates
- Needs daily administration
- Costs depends on ease of access
- Moderate effectiveness
 - up to 5 fold reduction
- · Some adverse effects if clay intake high



AFCF

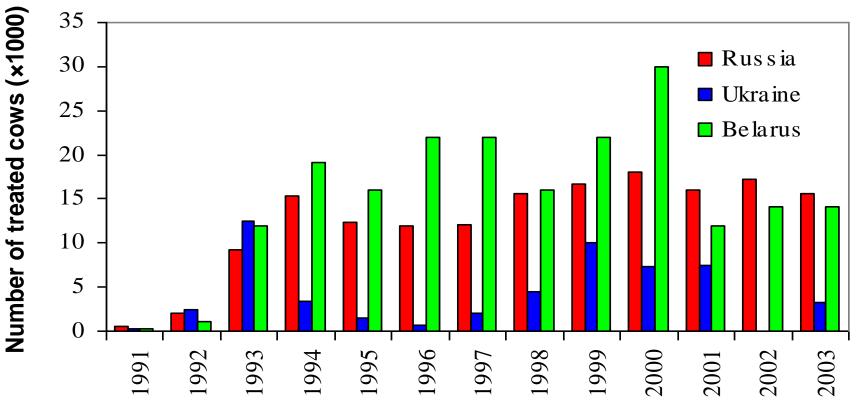
- Effectiveness: v high
- Feasibility
 - size, delivery routes for free ranging animals
- Acceptability – BLUE, boli
- Constraints
 - Licensing

Time on mountain pasture (d)

CE OF THI

Administration rates & reduction factors for AFCF

Livestock	AFCF	Reduction	Reduction	
	administration	factor	factor	
	Rate (g d ⁻¹)	fSU	Other sources	
Dairy cows	3	3-5	5-10	
Bull calf	3	4-5		
Pig	1.5-2	4-6	10	
Chicken	1.5	3-5		



Fesenko et al., 2007

Preventing gut absorption – AFCF-

Changes with time in the use of AFCF in the fSU

Years

(IAEA, 2005)

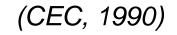
POST CHERNOBYL INITIATIVES

Disposal of contaminated milk and meat

- Disposal routes for milk
 - disposal to sea
 - incineration,
 - landspreading
 - processing and storage
- Disposal routes for meat
 - burial

- burning carcasses (potentially by incineration)
- carcasses rendered down

EC Maximum Permissible Levels (MPLs) for radiocaesium in animal feeds


Following a nuclear accident or any other case of radiological emergency

Animal feed intended for:	MPL		
	(Bq kg ⁻¹ as ready for		
	consumption)		
Pigs	1250		
Poultry, lambs and calves	2500		
Other	5000		

*The regulation does not specify a DM assumption for the feedingstuffs

The social dimension for applying management options

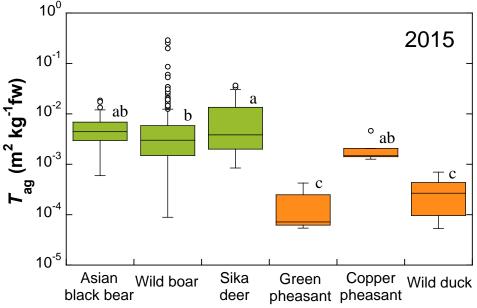
- Farmers / producers concerns:
 - animal welfare
 - feeding contaminated feedstuffs
 - compensation
 - residual levels of contamination in food
 - the use of secondary products such as composted material and manure on land
 - effects on landscape
 - environmental side effects

Fukushima Daiichi accident

- 11 March 2011
- Earthquake and tsunami
- Loss of cooling capacity
- Several initial releases due to venting and hydrogen explosions;
 - Weeks of subsequent releases
- Low [RI] and [RCs] in agricultural animal products
- High [RCs] in game animals

Emergency phase

- Relatively low [RI] and [RCs] in agricultural animal products
 - Dairy animals housed
 - No grazing in March 2011
 - Feeding stored feed
 - Less potential for transfer of radioiodine to milk
- Extensive, comprehensive food bans imposed quickly

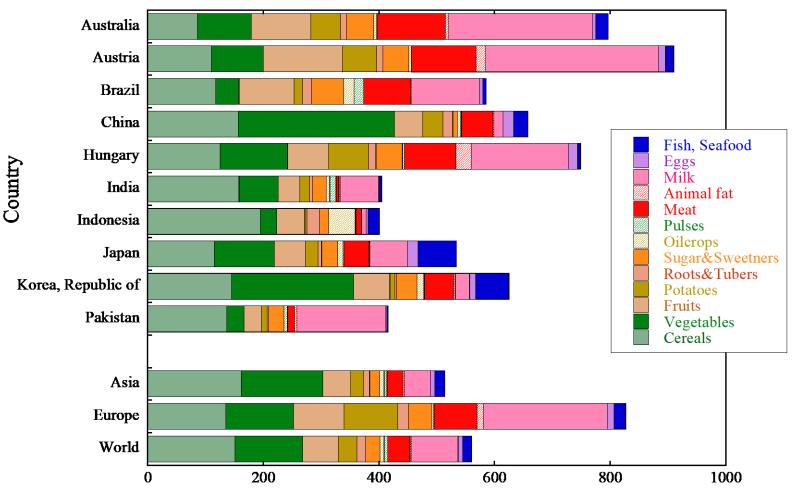


Existing situation

- High [RCs] in game animals – trashing fields
- Low [RCs] in agricultural animal products
- Tendency to refer to minimum measureable [RCs] rather than the "low" food standard limits
- Limited clean feeding
- Development of v. lowlevel *in vivo* monitoring methods

Animal name

Summary


- Kyshtym
 - Wide range of rads initially, ⁹⁰Sr long term, first development of wide range of remediation options
- Windscale
 - Some relevant radionuclides missed, identified and dumped milk
- Chernobyl
 - Severe impact of I isotopes in private milk, high and sustained transfer of RCs to animal products, importance of soil type, extensive and game animals, Cs binders, live monitoring, social dimension
- Fukushima
 - Agricultural practices and time of deposition minimised animal contamination in emergency phase, highly conservative approach in existing situation

GLOBAL FOOD CONSUMPTION

Consumption (kg/capita/y) in 2003

With thanks to

- Nick Beresford, Cath Barnett, Claire Wells CEH, UK
- Gerhard Proehl, Sergey Fesenko (IAEA), Mikhail Balonov, (RF), Shinichi Nakayama (JAEA, Japan)
- MODARIA participants

Questions?